Chem. Ber. 102, 4188-4192 (1969)

Rüdiger Mews und Oskar Glemser

N-Halogen-schwefeldifluoridimide, III*)

Uber die Addition von N-Chlor- und N-Brom-schwefeldifluoridimid an Perfluoralkene

Aus dem Anorganisch-Chemischen Institut der Universität Göttingen

(Eingegangen am 16. Juli 1969)

Die Bestrahlung von N-Chlor-schwefeldifluoridimid, ClNSF₂ (1), und Tetrafluoräthylen führt zu N-[2-Chlor-perfluoräthyl]-schwefeldifluoridimid, ClF₂C-CF₂-NSF₂ (3), und zu N-[4-Chlor-perfluorbutyl]-schwefeldifluoridimid, ClF₂C-[CF₂]₃-NSF₂ (4). Die Reaktion von 1 mit Hexafluorpropen ergibt ein Isomerengemisch aus N-[2-Chlor-perfluorpropyl]schwefeldifluoridimid, $F_3C-CFCl-CF_2-NSF_2$ (6), und N-[β-Chlor-perfluorisopropyl]schwefeldifluoridimid $F_3C-CF(NSF_2)-CF_2Cl$ (7). Die thermische Reaktion von Tetrafluoräthylen mit N-Brom-schwefeldifluoridimid, BrNSF₂ (8), liefert N-[2-Brom-perfluoräthyl]schwefeldifluoridimid, BrF₂C-CF₂-NSF₂ (9); bei der Umsetzung von 8 mit Hexafluorpropen erhält man ein Gemisch der 6 und 7 entsprechenden Isomeren 10 und 11.

Vor kurzem berichteten wir über die Reaktionen von $Hg(NSF_2)_2$ mit Chlor bzw. Brom¹⁾, wodurch eine Darstellung der entsprechenden *N*-Halogen-schwefeldifluoridimide ClNSF₂ (1) und BrNSF₂ (8) in präparativem Maßstab möglich ist, so daß nun die chemischen Eigenschaften dieser interessanten Verbindungsklasse untersucht werden können.

Durch Spaltung der Stickstoff-Halogen-Bindung dieser Verbindungen lassen sich gezielt – NSF₂-Gruppen an ungesättigte Systeme, wie z. B. die C=C-Doppelbindung, anlagern. Damit ist ein Weg zur Darstellung von solchen N-Alkyl-schwefeldifluoridimiden gegeben, die nach den bisher bekannten Verfahren (Umsetzung von SF₄ mit Nitrilen²), Isocyanaten²), Aminen³), R – NH – Si(CH₃)₃⁴) z.T. nicht darstellbar sind.

Tetrafluoräthylen (2) und ClNSF₂ (1) reagieren unter Bestrahlung gemäß (1). Daneben entsteht in ungefähr 5 proz. Ausbeute das Additionsprodukt aus 1 und zwei Molekülen 2 gemäß (2).

^{*)} II. Mitteil.: N-Fluorosulphur Difluoride Imide FNSF₂, O. Glemser, R. Mews und H. W. Roesky, Chem. Commun. **1969**, 914.

¹⁾ O. Glemser, R. Mews und H. W. Roesky, Chem. Ber. 102, 1523 (1969).

²⁾ W. C. Smith, C. W. Tullock, R. D. Smith und V. A. Engelhardt, J. Amer. chem. Soc. 82, 551 (1960).

³⁾ B. Cohen und A. G. Mac Diarmid, J. chem. Soc. [London] 1966, 1780.

⁴⁾ B. Cohen und A. G. Mac Diarmid, Angew. Chem. 75, 207 (1963); Angew. Chem. internat. Edit. 2, 151 (1963).

$$CINSF_2 + F_2C = CF_2 \xrightarrow{h_v} CIF_2C - CF_2 - NSF_2$$
(1)
1 2 3

$$1 + 2 2 \xrightarrow{h\nu} ClF_2C-CF_2-CF_2-NSF_2$$
(2)

Höhere Polymere beobachtet man bei dieser Reaktion nur in Spuren.

Hexafluorpropen (5) ergibt unter den gleichen Bedingungen ein Gemisch der beiden möglichen Isomeren:

$$F_{3}C-CF=CF_{2} + 1 \xrightarrow{h_{Y}} F_{3}C-CFCl-CF_{2}-NSF_{2} + F_{3}C-CF(NSF_{2})-CF_{2}Cl \quad (3)$$
5 6 (77%) 7 (23%)

Thermisch läßt sich die Stickstoff-Chlor-Bindung nur sehr schwer spalten, beim Erhitzen von 1 und 5 auf 110° tritt neben geringer Zersetzung von 1 kaum Reaktion ein.

Die Stickstoff-Brom-Bindung ist erwartungsgemäß wesentlich schwächer, die Addition von $BrNSF_2(8)$ an 2 und 5 gelingt bereits bei 90°.

$$BrNSF_2 + 2 \xrightarrow{90^\circ} BrF_2C-CF_2-NSF_2$$
(4)
8 9

$$8 + 5 \xrightarrow{90^\circ} F_3C-CFBr-CF_2-NSF_2 + F_3C-CF(NSF_2)-CF_2Br$$
(5)
10 11

Die Gesamtausbeuten bei den letzten beiden Reaktionen betragen nur 40-60%, da unter den Versuchsbedingungen z.T. Zersetzung von 8 eintritt, bevor es zur Addition kommt. Die Ausbeuten bei der *Bestrahlung* von 5 + 8 liegen bei 98% (Isomerenverhältnis 10: 11 = 77: 23).

Da bei den Bestrahlungsreaktionen nach Gl. (3) und (5) das gleiche Verhältnis von n- zu iso-NSF₂-Verbindung gefunden wird (Reaktion (5) wurde allerdings wegen der Instabilität von BrNSF₂ in flüssiger Phase durchgeführt), ist anzunchmen, daß beide Reaktionen nach dem gleichen Mechanismus ablaufen. Die experimentellen Befunde lassen sich in der Weise deuten, daß nach der homolytischen Spaltung der X–N-Bindung der X–NSF₂-Moleküle eine Addition des •NSF₂-Radikals an die C==C-Doppelbindung erfolgt. Für einen Angriff des •NSF₂-Radikals an die Doppelbindung als Primärschritt der Addition spricht auch ein Überwiegen der n-Verbindung im Produkt, da ein intermediär gebildetes $F_3C - CF - CF_2 - NSF_2$ - stabiler sein sollte als ein $F_3C - CF(NSF_2) - CF_2$ -Radikal⁵). Weitere Untersuchungen^{6,7)} sollen eine endgültige Klärung des Mechanismus bringen.

Tab. 1 zeigt einen Überblick über die Zuordnung der IR-Banden, Tab. 2 die NMR-Daten der NSF₂-Gruppe.

⁵⁾ R. E. Banks, Fluorocarbons and their derivatives, S. 32 ff., Oldbourne Press, London 1964.

⁶⁾ R. Mews und O. Glemser, Addition von N-Halogen-schwefeldifluoridimiden an Chloralkene, Inorg. nucl. Chem. Letters, im Druck.

⁷⁾ R. Mews und O. Glemser, Addition von N-Halogen-schwefeldifluoridimiden an asymmetrische Chlor-fluor- und Fluoralkene, in Vorbereitung.

Schwefeldifluoridimid		νs=n (cm ⁻¹)	$v_{symSF} (cm^{-1}) v_{asSF} (cm^{-1})$	
ClF ₂ C-CF ₂ -NSF ₂	(3)	1391	765	711
$ClF_2C - [CF_2]_3 - NSF_2$	(4)	1391	764.5	713
BrF ₂ C-CF ₂ -NSF ₂	(9)	1384	767.5	710
$F_3C-CFCl-CF_2-NSF_2$	(6)	1385	770	711
$F_3C\!-\!CFBr-\!CF_2\!-\!NSF_2$	(10)	1383	768	710

Tab. 1. IR-Banden der dargestellten N-substit. Schwefeldifluoridimide (Gasaufnahmen)⁶⁾

Tab. 2. NMR-Daten für die NSF2-Gruppe der N-substit. Schwefeldifluoridimide (in Substanz)

Schwefeldifluoridimid		δsF (ppm)	JSF-Fa (Hz)	Jsf-fβ (Hz)
ClF ₂ C-CF ₂ -NSF ₂	(3)	-53.4	18.5	3.2
BrF ₂ C-CF ₂ -NSF ₂	(9)	54.4	18.7	3.2
ClF ₂ C-[CF ₂] ₃ -NSF ₂	(4)	-53.9	19.5	
$F_3C - CFCl - CF_2 - NSF_2$	(6)	-53.8		
F ₃ CCFBrCF ₂ -NSF ₂	(10)	-53.9		

Dem Herrn Bundesminister für wissenschaftliche Forschung, der Stiftung Volkswagenwerk und der Deutschen Forschungsgemeinschaft danken wir für apparative und finanzielle Hilfe.

Beschreibung der Versuche

Für die Aufnahme der NMR-Spektren in Substanz (CCl₃F äußerer Standard) diente ein Varian A56/60-Spectrometer, für die Massenspektren ein CH4-Gerät der Atlas-Werke. Die IR-Spektren wurden in 12-cm-Gasküvetten (KBr-Fenster) mit einem Perkin-Elmer Spectrophotometer 125 vermessen (sst = sehr stark, st = stark, m = mittel, schw = schwach, Sch = Schulter).

Die Ausgangsverbindungen ClNSF₂ (1) und BrNSF₂ (8) wurden nach dem von uns beschriebenen Verfahren¹⁾, C₂F₄ (2) durch Depolymerisation von Teflon (600°/5 Torr) dargestellt⁸⁾, C₃F₆ (5) von der Fa. Peninsular Chem. Research Inc., Gainesville, Florida, USA, bezogen.

Die Bestrahlungen von CINSF₂ erfolgten in einem 10-*l*-Pyrexkolben, die von BrNSF₂ in einer 150-ccm-Glasbombe mit einer wassergekühlten Lampe Philips 500 W SPEC D 8 aus 30-50 cm Entfernung. Die Glasbombe wurde während des Bestrahlens durch fließendes Leitungswasser gekühlt.

N-[1.1.2.2-Tetrafluor-2-chlor-äthyl]-schwefeldifluoridimid, $CF_2ClCF_2NSF_2$ (3), und N-[1.1.2.2.3.3.4.4-Octafluor-4-chlor-butyl]-schwefeldifluoridimid, $CF_2Cl-[CF_2]_3-NSF_2$ (4): 14.7g (0.123 Mol) $ClNSF_2$ (1) und 12.3g (0.123 Mol) Tetrafluoräthylen (2) wurden 4 Stdn. bestrahlt. Die Fraktionierung i. Hochvak. und anschließende Destillation über eine 10-cm-Füllkörperkolonne ergaben 18 g (67%) 3, Sdp. 56-57°.

> C₂ClF₆NS (219.5) Ber. C 10.94 Cl 16.15 F 51.9 N 6.35 Gef. C 10.81 Cl 15.87 F 50.3 N 6.26 Mol.-Gew. 211, 218 (Dampfdichte)

¹⁹F-NMR: δ_{SF_2} -53.4 ppm; δ_{CF_2} +84.8; δ_{CF_2Cl} +74.9 ($J_{SF_2-CF_2}$ 18.5 Hz, $J_{SF_2-CF_2Cl}$ 3.2, $J_{CF_2-CF_2Cl}$ 3.9).

8) E. E. Lewis und M. A. Naylor, J. Amer. chem. Soc. 69, 1968 (1947).

IR: 1391 sst $\nu_{S=N}$; 1282 m; 1184 st; 1165 Sch; 1147 st; 1113 schw; 1087 m; 953 st; 917 m; 765 sst $\nu_{sym SF}$; 711 st $\nu_{as SF}$; 620 schw; 485 schw; 455/cm m.

Massenspektrum (in Klammern relative Häufigkeiten): 202/200 M-F (0.6/1.8); 184 M-Cl (6.0); 152/150 CFClNSF₂ (1.1/3.3); 137/135 CF₂ClCF₂ (1.2/3.6); 134 CF₂NSF₂ (100); 119 C₂F₅ (0.3); 115 CF₂NSF (1.7); 100 CF₂CF₂ (4.2); 96 CF₂NS (1.4); 87/85 CF₂Cl (5.4/16.2); 76 C₂F₂N (1.4); 70 SF₂ (16.7); 69 CF₃ (17.0); 68/66 CFCl (0.5/1.6); 51 SF (5.1); 50 CF₂ (7.9); 46 NS (29.5); 37/35 Cl (0.3/0.8); 32 S (2.1); 31 CF (9.6).

Der Destillationsrückstand von mehreren Ansätzen wurde gesammelt, die Aufarbeitung ergab 4, Sdp.₆₅ $44-46^{\circ}$. Die Ausbeuten liegen unter 5%.

 $\begin{array}{rrrr} C_4 ClF_{10} NS \end{tabular} (319.4) & Ber. C 15.03 \end{tabular} Cl 11.10 \end{tabular} 59.45 \end{tabular} N \end{tabular} 4.38 \end{tabular} S \end{tabular} 10.03 \\ & Gef. C 14.84 \end{tabular} Cl 11.20 \end{tabular} 58.9 \end{tabular} N \end{tabular} 4.25 \end{tabular} S \end{tabular} 10.03 \\ & Gef. C \end{tabular} 14.84 \end{tabular} Cl 11.20 \end{tabular} 58.9 \end{tabular} N \end{tabular} 4.25 \end{tabular} S \end{tabular} 10.03 \\ & Gef. C \end{tabular} 14.84 \end{tabular} Cl 11.20 \end{tabular} 58.9 \end{tabular} N \end{tabular} 4.25 \end{tabular} S \end{tabular} 10.03 \\ & Gef. C \end{tabular} 14.84 \end{tabular} Cl 11.20 \end{tabular} S \end{tabular} 10.03 \\ & Gef. C \end{tabular} 14.84 \end{tabular} Cl 11.20 \end{tabular} S \end{tabular} S \end{tabular} 10.03 \\ & Gef. C \end{tabular} 14.84 \end{tabular} S \end{tabular} 14.84 \end{tabular} S \end{tabular} S \end{tabular} S \end{tabular} 14.84 \\ & Gef. C \end{tabular} 14.84 \end{tabular} S \$

¹⁹F-NMR (in Klammern relative Intensitäten): $\delta_{SF_2} - 53.9$ ppm (1.0); $\delta_{\alpha CF_2} + 82.4$ (1.01); $\delta_{CF_2Cl} + 69.7$ (1.01); $\delta_{\beta CF_2}/\delta_{\gamma CF_2} + 121.3/+125.3$ (0.99/1.00) ($J_{\alpha CF_2-SF_2} = 19.5$ Hz).

IR: 1391 sst $v_{S=N}$; 1317 m; 1287 schw; 1240 Sch; 1212 sst; 1157 st; 1140 Sch; 1111 schw; 1098 schw; 983 m; 910 schw; 895 schw; 847 m; 792 Sch; 764.5 sst $v_{sym SF}$; 737 m; 713 st $v_{as SF}$; 650 schw; 587 schw; 485 Sch; 450/cm m.

Massenspektrum: 302/300 M-F (1.1/3.3); 282 M-Cl (15.9); 242 M-SF₂ (0.5); 237/235 CF₂Cl-[CF₂]₃ (0.2/0.7); 234 (CF₂)₃NSF₂ (3.3); 196 (CF₂)₃NS (0.8); 184 (CF₂)₂NSF₂ (3.6); 165 (CF₂)₂NSF (2.2); 149/147 CF₂ClCFCF (0.4/1.3); 146 (CF₂)₂NS (2.3); 137/135 CF₂ClCF₂ (0.5/1.8); 134 CF₂NSF₂ (100); 131 CF₂CF₂CF (2.3); 119 CF₃CF₂ (4.7); 115 CF₂NSF (2.9); 100 CF₂CF₂ (7.4); 96 CF₂NS (0.7); 93 C₃F₃ (1.0); 87/85 CF₂Cl (4.9/14.7); 70 SF₂ (16.8); 69 CF₃ (37.2); 64 CF₂N (3.2); 51 SF (4.0); 50 CF₂ (2.7); 46 NS (18.4); 32 S (1.2); 31 CF (6.4).

N-[1.1.2.3.3.3-Hexafluor-2-chlor-propyl]-schwefeldifluoridimid, $CF_3CFClCF_2NSF_2$ (6), und *N*-[$a.\beta,\beta,\beta,\beta',\beta'$ -Hexafluor- β' -chlor-isopropyl]-schwefeldifluoridimid, $CF_3CF(NSF_2)CF_2Cl$ (7): 15.0 g (0.1255 Mol) CINSF₂ (1) und 23.0 g (0.1535 Mol) Hexafluorpropen (C₃F₆) (5) wurden 100 Stdn. bestrahlt. Die Destillation i. Hochvak. ergab 28.0 g C₃F₆·CINSF₂, Sdp. 73-76° (83%, bez. auf eingesetztes 1). Nach dem NMR-Spektrum bestand das Produkt aus einem Isomerengemisch von 6 (77%) und 7 (23%). Die Analyse und die Molekulargewichtsbestimmung wurden mit dem Isomerengemisch durchgeführt. Da die geradkettige Verbindung etwas höher siedet als die Isoverbindung, reichert sich 6 bei der Destillation (50-cm-Drehbandkolonne) in dem schwerer flüchtigen Teil an. Die letzten 3 g des bei der Destillation übergehenden Produkts wurden gesondert aufgefangen (ungefähr 94 proz. 6) und hiervon das IR- und Massenspektrum aufgenommen.

C₃ClF₈NS (269.6) Ber. C 13.4 Cl 13.15 F 56.4 N 5.20 S 11.9 Gef. C 13.9 Cl 12.7 F 55.8 N 5.13 S 12.1 Mol.-Gew. 274, 274 (kryoskop. in Benzol)

¹⁹F-NMR: CF₃CFClCF₂NSF₂ (6): $\delta_{SF_2} - 53.8 \text{ ppm}$ (2.0); $\delta_{CF_2}/\delta_{CF_3} \sim +80.3$ (5.2); $\delta_{CF} + 140.4$ (1.0). CF₃CF(NSF₂)CF₂Cl (7): $\delta_{SF_2} - 59.4 \text{ ppm}$ (2.0); $\delta_{CF_3} + 79.8$ (3.1); $\delta_{CF_2Cl} + 68.5$ (2.0); $\delta_{CF} + 137.7$ (1.0).

Auch hier findet man, wie bei anderen Verbindungen des Typs $F_3C-CXY-CF_2Cl$, für $\Delta = \delta_{CF_3} - \delta_{CF_2Cl} \approx 11-12 \text{ ppm}^{9,10}$.

IR für 6: 1385 sst $v_{S=N}$; 1297 st; 1239 sst; 1131 m; 967 m; 770 sst $v_{sym SF}$; 743 m; 711 st $v_{as SF}$; 455/cm m.

Massenspektrum: Höchste Bruchstücke 252/250 M-F (0.9/2.8); 234 M-Cl (1.1); 202/200 M-CF₃ (0.6/1.9); 187/185 M-NSF₂ (1.1/3.4). Die stärksten Bruchstücke sind 134 CF₂NSF₂ (100); 69 CF₃ (49.8); 70 SF₂ (24.4); 46 NS (23.4).

N-[1.1.2.2-Tetrafluor-2-brom-äthyl/-schwefeldifluoridimid, $CF_2BrCF_2NSF_2$ (9): 16.8g C_2F_4 (2) (0.168 Mol) und 26.7 g $BrNSF_2$ (8) (0.163 Mol) wurden in einem Monel-Zylinder 24 Stdn. auf 90° erhitzt. Die Fraktionierung i. Hochvak. und anschließende Destillation über eine 40-cm-Drehbandkolonne ergaben 29.5 g (53%, bcz. auf eingesetztes 8), Sdp. 78°.

> C_2BrF_6NS (263.9) Ber. C 9.38 Br 30.3 F 42.9 N 5.47 S 12.08 Gef. C 9.17 Br 30.2 F 43.2 N 5.30 S 12.16 Mol.-Gew. 257.9, 255 (kryoskop. in Benzol)

¹⁹F-NMR: δ_{SF_2} = 54.4 ppm; δ_{CF_2} +83.2; δ_{CF_2Br} +69.4 ppm ($J_{SF_2-CF_2}$ 18.7 Hz; $J_{SF_2-CF_2Br}$ 3.2; $J_{CF_2-CF_2Br}$ 5.35).

IR: 1389 sst $\nu_{S=N}$; 1272 m; 1178 st; 1160 Sch; 1143 st; 1096 Sch; 1077 st; 918 st; 875 m; 767.5 sst $\nu_{svm SF}$; 710 st $\nu_{as SF}$; 610 schw; 488/cm m.

Massenspektrum: 246/244 M -- F (1.1/1.0); 196/194 CFBrNSF₂ (1.1/1.1); 184 CF₂CF₂NSF₂ (6.4); 181/179 CFBrCF₂ (3.1/3.1); 165 CF₂CF₂NSF (1.2); 134 CF₂NSF₂ (100); 131/129 CF₂Br (7.4/7.4); 119 CF₃CF₂ (0.6); 115 CF₂NSF (2.8); 112/110 CFBr (0.6/0.6); 100 CF₂CF₂ (6.3); 96 CF₂NS (0.9); 81/79 Br (1.2/1.1); 76 C₂F₂N (0.9); 70 SF₂ (17.5); 69 CF₃ (16.8); 51 SF (4.2); 50 CF₂ (6.7); 46 NS (20.2); 32 S (1.3); 31 CF (7.9).

N-[1.1.2.3.3.3-Hexafluor-2-brom-propyl]-schwefeldifluoridimid, $CF_3CFBrCF_2NSF_2(10)$, und N-[β -Brom- α . β , β , β' , β' -hexafluor-isopropyl]-schwefeldifluoridimid, $CF_3CF(NSF_2)CF_2Br(11)$

a) Bestrahlung: 17.2 g BrNSF₂ (8) (0.105 Mol) und 22.0 g Hexafluorpropen (C_3F_6) (5) (0.147 Mol) wurden unter Rühren 5 Stdn. bestrahlt. Die Fraktionierung i. Hochvak. ergab 32 g (97%, bez. auf eingesetztes 8) $C_3F_6 \cdot BrNSF_2$, Sdp.₁₄₀ 50—52°. Das Verhältnis der Isomeren betrug 10: 11 = 77: 23. Analyse, Mol.-Gew.-Bestimmung und ¹⁹F-NMR wurden mit dem Isomerengemisch durchgeführt; durch Destillation ließ sich 10 bis auf ~90% anreichern, hiervon wurden IR- und Massenspektrum aufgenommen.

b) Thermische Reaktion: 15.0g 8 (0.0915 Mol) und 20.0g 5 (0.120 Mol) wurden 15 Stdn. auf 95° erhitzt. Die Fraktionierung i. Hochvak. und anschließende Destillation ergaben 13.2 g C_3F_6 BrNSF₂ (46%, bez. auf 8). Das Verhältnis der Isomeren betrug 10 : 11 = 57 : 43.

 $\begin{array}{rl} C_{3}BrF_{8}NS \end{tabular}{313.9} & Ber. \ C\ 11.47 \ Br\ 25.45 \ F\ 48.4 \ N\ 4.46 \ S\ 10.21 \\ & Gef. \ C\ 11.28 \ Br\ 25.25 \ F\ 48.1 \ N\ 4.48 \ S\ 10.19 \\ & Mol.-Gew.\ 318,\ 319 \end{tabular} \ (kryoskop.\ in\ Benzol) \end{array}$

¹⁹F-NMR: CF₃CFBrCF₂NSF₂ (10): δ_{SF_2} –53.9 ppm (2.0); $\delta_{CF_2}/\delta_{CF_3} \sim +86.7$ (5.0); δ_{CF} +141.8 (0.97). CF₃CF(NSF₂)CF₂Br (11): δ_{SF_2} –59.4 ppm (2.0); δ_{CF_3} +78.8 (3.1); δ_{CF_2} +63.2 (1.9); δ_{CF} +134.2 (0.95).

IR für 10: 1383 sst $v_{S=N}$; 1288 st; 1246/1234 sst; 1138 m; 947 m; 928 m; 915 m; 768 sst $v_{sym SF}$; 710/cm st $v_{as SF}$.

Massenspektrum: Höchste Bruchstücke 296/294 M-F (1.2/1.3); 246/244 M-CF₃ (0.7/0.7); 234 M-Br (1.1); 231/229 M-NSF₂ (2.1/2.1). Die stärksten Bruchstücke sind 134 CF₂NSF₂ (100); 69 CF₃ (32.1); 70 SF₂ (19.7); 46 NS (18.8). -131/129 CF₂Br (6.7/6.9) ist dem Isomeren 11 zuzuordnen.

9) D. M. Gale und C. G. Krespan, J. org. Chemistry 33, 1002 (1968), fanden f
ür dic Verbindung p-H₃C - C₆H₄-C(CF₃) - NH₂ Δ = 11.2 ppm.

¹⁰⁾ J. W. Emsley, J. Feeney und L. H. Sutcliffe, High Resolution NMR Spectroscopy, Bd. 2, S. 958, Pergamon Press, Oxford 1966, gcben für $(CF_3)_2CF-CF(CF_3)CF_2CI$ $\Delta = 11.73$ ppm an.

4192

[266/69]